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Abstract: A commonly occurring problem in image 

processing is the reconstruction of missing data, generally 

referred to as image inpainting and can be viewed as a 2D 

interpolation problem. In this paper we present an approach 

based on variational model to solve the inpainting problem. 

Previously the total variation model has been successfully 

used to solve inpainting problems. We introduce a variant of 

total variation model that includes a parameter q that 

controls the degree of smoothness of the reconstruction. The 

corresponding Euler-Lagrange equation is derived and the 

corresponding boundary value problem solved. Test 

examples show that the method works well. 

Keywords: Inpainting, Total Variation, Minimization, 

Text Removal. 

I. Introduction 

A commonly occurring problem in image processing is that 

images contain regions where the pixel information has been 

lost, or corrupted. Examples include scratches on images, 

unwanted objects disturbing a photo, or movie subtitles. The 

problem of recovering the hidden or damaged parts of an 

image is commonly referred to in image processing 

community, as image inpainting. Essentially we have an two 

dimensional interpolation problem where the hidden details 

are approximated using the available image information (see 

Guillemot and Le Meur (2014); Efros and Leung (1999); 

Mumford and Shah (1989)) and where the basic idea is to fill-

in the damaged regions by a propagation of available 

information from their surroundings in the image. The 

situation is such that the image domain  contains a region , 

inpainting domain where image data is unavailable.  Note that 

details that are completely hidden by the region Ω cannot be 

exactly reconstructed by any mathematical method. Hence the 

goal is not to reconstruct the true image, but rather to 

construct an image that looks a realistic approximation of the 

true unknown image. 

 

 

In this paper we study inpainting techniques based on PDEs. 

More specifically the image  is assumed to minimize 

the energy functional, 

 

where  is the inpainting domain. The case  corresponds 

to the traditional Total Variation energy. Total Variation 

minimization has been applied to a wide variety of image 

processing problems including for example image denoising 

and has proven to be very successful, see for example Rudin 

et al. (1992); Chan et al. (1995); Vogel and Oman (1996). The 

case   corresponds to Harmonic inpainting. In this paper 

we are primarily interested in studying schemes with 

.  

Image inpainting has a wide range of important image 

processing applications. Some of the tasks achieved by 

inpainting that are important in industrial and engineering 

applications include for instance, to remove and/or add objects 

in images, image coding and wireless image transmission. For 

a short overview on the inpainting problem and some of the 

most recent approaches, we refer to Berntsson and Baravdish 

(2014). 

The rest of the paper is organized as follows: In section 

II we study the energy functional (1) and derive an equivalent 

BV problem. In section III we discuss the numerical 

implementation. Section IV is dedicated to numerical 

experiments and finally we present some concluding remarks 

in section V. 

II. Minimization of the Energy Functional 

In this section we explain in detail how to minimize the 

energy functional (1), with parameter . More 

specifically we are interested in finding, 
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             (2) 

A standard technique is to find the appropriate Euler-Lagrange 

equation as in Aubert and Kornprobst (2002); Ballester et al. 

(2001) and make use of the following theorem (see for 

example Evans (1998) and Gilbarg and Trudinger (1977)): 

Theorem 2.1. Suppose  is a functional of the form 

  

 
                      

Then any stationary point for  satisfies the Euler-Lagrange 

equation, 

 
      

Using Theorem 2.1 it is straightforward to derive the 

Euler-Lagrange equation that corresponds to the energy 

functional (1). Denoting  and  by  and  respectively, 

we have to evaluate the expression: 

  

 

 

where  

 
     

Since  doesn’t explicitly depend on , the term  is 

equal to zero. Next we calculate expressions for the two 

remaining terms. Firstly we consider the term . 

Using standard differentiation rules we have: 

 

And 

 

 

Similarly the last term is 

 

Collecting the terms we obtain the following expression for 

the Euler-Lagrange equation: 

 

 

 

   

After some algebraic rearrangements, we obtain the following 

equivalent expression 

 

  

where . Thus a minimizer of the energy functional 

 can be found by solving the following boundary value 

problem: 

  

 
 

 

where , denotes the boundary of the inpainting domain 

, and  is a given boundary condition. 

Remark 1. For practical computations it is important to 

avoid division by zero in (9). A commonly used technique, as 

in Chan et al. (1996); Vogel and Oman (1996), is to replace 

 in (8) by 

, 

In (9), where  is a small positive parameter. 

Several techniques for carrying out the computations such as 

(9) exist. See for example Aubert and Kornprobst (2002); 

Rudin et al. (1992). 

III. Numerical Implementation 

As discussed previously the energy functional (1) can be 

minimized by solving the corresponding BV problem (see 

expression (9)). In this case we have a non-linear problem and 



               International Journal of Scientific Engineering and Technology                                      ISSN : 2277-1581 

               Volume No. 7, Issue No. 3, PP : 31-35                                                                        1 March  2018 

 

IJSET@2018 Page 33 

 

therefore an iterative scheme is needed, see Rudin and Osher 

(1994); Vogel and Oman (1996). 

The image is assumed to be represented as a set of 

color values, or pixels, that are stored in a  matrix . 

The domain is similarly represented by a mask matrix  such 

that   is non-zero if the pixel  is inside the 

inpainting domain  and zero otherwise. Our iterative method 

is as follows:  

Let  be a starting guess. For  solve 

  in                              

The stopping criterion  , 

was used for numerical computations. 

In each step of our iterative scheme we need to solve a rather 

large linear system of equations . The available 

information regarding the pixel  is stored in the row  

 of the equations system.  

Thus if  we generate a row,  and, 

 meaning that   if the pixel  

has a known value. Othervise, if  is non-zero, i.e., the 

pixel  is missing, we generate the equation 

 by discretizing the differential operator, 

 

using a standard point finite difference discretization. The 

resulting method is rather robust and works well. 

Choice of  : The optimal value for the parameter p to use 

depends on the image. In some cases one wants to use 

different values of p in parts of the image. In our codes the 

mask matrix is used to store this information so that 

 is the value for  to use when reconstructing the 

image information at pixel location . 

IV. Inpainting and Text Removal Examples 

In this section we will present a few numerical experiments 

intended to demonstrate that the proposed method works well. 

In all cases the computations were carried out using Matlab on 

a standard PC. For all tests a relative stopping criteria 

 was used. 

First we apply our method to an image showing a few 

simple geometric objects. The test image is of size 300 × 300 

and around 9952 pixels are considered unknown and thus 

belong to the inpainting domain . The original image   and 

the corrupted image   are both displayed in Figure 1. 

 

Figure 1: The original image  (top) and the corrupted image 

  (bottom). Both images are of size 300 × 300. 

The result after using our algorithm to reconstruct the 

corrupted pixels using , i.e. the traditional TV 

inpainting scheme, is shown in Figure 2 (top). The result is as 

expected: the inpainting scheme is successful in 

reconstructing most of the features of the original image. 

However because of the aspect ratio some parts of triangular 

regions are inpainted as white instead of gray. This behaviour 

of TV inpainting is known and hence expected to happen (see 

for example Chan and Shen (2005)). In this case the original, 

exact, image does not represent a global minimum for the 
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functional . Rather the algorithm picks out the local 

minima represented by the image . For this example 

 and so the algorithm cannot 

be expected to converge to the true image. The convergence 

history  is also shown in Figure 2 (bottom), and 

demonstrates that the convergence is monotonous even though 

rather slow. 

Figur

e 2: The reconstructed image   obtained using our algorithm 

and  (top). The reconstruction was successful 

except for some expected parts of the gray triangular object. 

Also the convergence history   is illustrated 

(bottom). 

If the parameter value  (or ) is used we 

expect our method to behave closer to Harmonic inpainting. 

That is the reconstructed details will be somewhat blurred. 

The reconstructed image  obtained while using   is 

displayed in Figure 3 (top). Clearly the reconstructed image is 

too smooth. Since we use Harmonic inpainting (i.e.,  ) as 

an initial guess for our algorithm both the initial guess and 

convergence rates are much better if  is used as shown 

by Figure 3 (bottom).  

As a second example we consider a photo showing two 

geese swimming in a lake. The image contains both smooth 

and detailed regions. The photo and the different regions are 

displayed in Figure 4. 

Figur

e 3: The reconstructed image   obtained using our algorithm 

and    (top). The image details are now blurred out 

slightly. We also present the convergence history   

(bottom).  

Figure 4: A photo showing two geese with text hiding parts of 

the image (top). A matrix Mask2 shows the parts of the photo 

that are considered detailed and the parts that are considered 

smooth (bottom). 

The reconstruction is performed using different values of the 

parameter p in different regions of the image. During the 

reconstruction the value  is used for the smooth parts 

and the value  is used for the detailed parts. This 

means increased computational efficiency as the convergence 

becomes much faster in the smooth region. The results 

obtained by using our inpainting scheme are displayed in 

Figure 5. The results are quite 
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satisfactory.

 

Figure 5: The reconstructed photo (top) and the convergence 

history    (bottom). 

V. Concluding Remarks 

In this paper a new inpainting scheme has been presented. The 

method is similar to the well-known Total Variation 

inpainting method. In our method an additional parameter  

that can be used to control the desired smoothness of the 

reconstructed image is added to the energy functional. The 

corresponding Euler-Lagrange equations are derived and an 

iterative numerical scheme is implemented for the resulting 

boundary value problem. Test examples demonstrate that the 

method works well. 
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